有这样一个问题:当两个看上去不同的程序 解决同一个问题时,会有优劣之分么?答案是肯定的。算法分析关心的是基于所使用的计算资源比较算法。我们说甲算法比乙算法好,依据是甲算法有更高的资源利用率或使用更少的资源。从这个角度来看,上面两个函数其实差不多,它们本质上都利用同一个算法解决累加问题。
计算资源究竟指什么?思考这个问题很重要。有两种思考方式。
sumOfN
函数的执行时间,一个方法就是做基准分析。也就是说,我们会记录程序计算出结果所消耗的实际时间。在 Python 中,我们记录下函数就所处系统而言的开始时间和结束时间。time
模块中有一个 time 函数,它会以秒为单位返回自指定时间点起到当前的系统时钟时间。在首尾各调用一次这个函数,计算差值,就可以得到以秒为单位的执行时间。举个例子:我们需要求解前n个数之和,通过计算所需时间来评判效率好坏。(这里使用time函数,并计算5次来看看大致需要多少时间)
第一种方法:循环方案
import time def sumOfN2(n): start=time.time() thesum=0 for i in range(1,n+1): thesum=thesum+i end=time.time() return thesum,end-start #循环5次 for i in range(5): print("Sum is %d required %10.7f seconds" % sumOfN2(10000))
结果如下:
第二种方法:公式方法
#直接利用求和公式 def sumOfN3(n): start=time.time() thesum=(1+n)*n/2 end=time.time() return thesum,end-start for i in range(5): print("Sum is %d required %10.7f seconds" % sumOfN3(10000))
结果如下:
直觉上,循环方案看上去工作量更大,因为有些步骤重复。这好像是耗时更久的原因。而且,循环方案的耗时会随着 n 一起增长。然而,这里有个问题。如果在另一台计算机上运行这个函数,或用另一种编程语言来实现,很可能会得到不同的结果。如果计算机再旧些,sumOfN3
的执行时间甚至更长。
我们需要更好的方式来描述算法的执行时间。基准测试计算的是执行算法的实际时间。 这不是一个有用的指标,因为它依赖于特定的计算机、程序、时间、编译器与编程语言。我们希 望找到一个独立于程序或计算机的指标。这样的指标在评价算法方面会更有用,可以用来比较不同实现下的算法。
这里为了让大家知道一些函数的增长速度,我决定将一些函数的列举出来。
例:计算如下程序的步骤数,和数量级大O
a = 5 b = 6 c = 10 for i in range(n): for j in range(n): x = i * i y = j * j z = i * j for k in range(n): w = a * k + 45 v = b * b d = 33
这段程序的赋值次数为:
大家可以自己算一下。
这里我们采用不同的算法实现一个经典的异序词检测问,所谓异序词,就是组成单词的字母一样,只是顺序不同,例如heart
和earth
,python
和typhon
。为了简化问题,我们假设要检验的两个单词字符串的长度已经一样长。
该方法主要是清点第 1 个字符串的每个字符,看看它们是否都出现在第 2 个字符串中。如果是,那么两个字符串必然是异序词。清点是通过用 Python
中的特殊值 None 取代字符来实现的。但是,因为 Python 中的字符串是不可修改的,所以先要将第 2 个字符串转换成列表。在字符列表中检查第 1 个字符串中的每个字符,如果找到了,就替换掉。
def anagramSolution1(s1, s2): alist = list(s2) pos1=0 stillOK = True while pos1 < len(s1) and stillOK: pos2 = 0 found = False while pos2 < len(alist) and not found: if s1[pos1] == alist[pos2]: found = True else: pos2 = pos2 + 1 if found: alist[pos2] = None else: stillOK = False pos1 = pos1 + 1 return stillOK
来分析这个算法。注意,对于 s1 中的 n 个字符,检查每一个时都要遍历 s2 中的 n 个字符。 要匹配 s1 中的一个字符,列表中的 n 个位置都要被访问一次。因此,访问次数就成了从 1 到 n 的整数之和。这可以用以下公式来表示。
因此,该方法的时间复杂度是
尽管 s1 与 s2 是不同的字符串,但只要由相同的字符构成,它们就是异序词。基于这一点, 可以采用另一个方案。如果按照字母表顺序给字符排序,异序词得到的结果将是同一个字符串。
def anagramSolution2(s1, s2): alist1 = list(s1) alist2 = list(s2) alist1.sort() alist2.sort() pos=0 matches = True while pos < len(s1) and matches: if alist1[pos] == alist2[pos]: pos = pos + 1 else: matches = False return matches
乍看之下,你可能会认为这个算法的时间复杂度是O ( n ) O(n)O(n),因为在排序之后只需要遍历一次就可以比较 n 个字符。但是,调用两次 sort 方法不是没有代价。我们在后面会看到,排序的时 间复杂度基本上是O ( n 2 ) O(n2 )O(n2)或 O ( n l o g n ) O(nlogn)O(nlogn) ,所以排序操作起主导作用。也就是说,该算法和排序过程的数量级相同。
用蛮力解决问题的方法基本上就是穷尽所有的可能。就异序词检测问题而言,可以用 s1 中 的字符生成所有可能的字符串,看看 s2 是否在其中。但这个方法有个难处。用 s1 中的字符生 成所有可能的字符串时,第 1 个字符有 n 种可能,第 2 个字符有 n-1 种可能,第 3 个字符有 n-2 种可能,依此类推。字符串的总数是n ∗ ( n − 1 ) ∗ ( n − 2 ) ∗ . . . . . . ∗ 3 ∗ 2 ∗ 1 n*(n-1)*(n-2)*......*3*2*1n∗(n−1)∗(n−2)∗......∗3∗2∗1,即为n ! n!n!也许有些字符串会重复,但程序无法预见,所以肯定会生成n ! n!n!个字符串。
当 n 较大时, n! 增长得比2n还要快。实际上,如果 s1 有20个字符,那么字符串的个数就 是 20!= 2432902008176640000 。假设每秒处理一个,处理完整个列表要花 77146816596 年。 这可不是个好方案。
最后一个方案基于这样一个事实:两个异序词有同样数目的 a、同样数目的 b、同样数目的 c,等等。要判断两个字符串是否为异序词,先数一下每个字符出现的次数。因为字符可能有 26 种,所以使用 26 个计数器,对应每个字符。每遇到一个字符,就将对应的计数器加 1。最后, 如果两个计数器列表相同,那么两个字符串肯定是异序词。
def anagramSolution4(s1, s2): c1=[0]*26 c2=[0]*26 for i in range(len(s1)): pos = ord(s1[i]) - ord('a') c1[pos] = c1[pos] + 1 for i in range(len(s2)): pos = ord(s2[i]) - ord('a') c2[pos] = c2[pos] + 1 j=0 stillOK = True while j < 26 and stillOK: if c1[j] == c2[j]: j=j+1 else: stillOK = False return stillOK
这个方案也有循环。但不同于方案 1,这个方案的循环没有嵌套。前两个计数循环都是 n 阶 的。第 3 个循环比较两个列表,由于可能有 26 种字符,因此会循环 26 次。全部加起来,得到总步骤数 T (n) =2n - 26 ,即 O(n) 。我们找到了解决异序词检测问题的线性阶算法。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理