Pandas
纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。pandas
提供了大量能使我们快速便捷地处理数据的函数和方法。
为了让大家对pandas
的操作更加熟练,我整理了一些关于pandas
的小操作,会依次为大家展示
今天我将先为大家如何关于pandas
如何使用列表和字典创建 Series
。
import pandas as pd ser1 = pd.Series([1.5, 2.5, 3, 4.5, 5.0, 6]) print(ser1)
Output:
0 1.5
1 2.5
2 3.0
3 4.5
4 5.0
5 6.0
dtype: float64
import pandas as pd ser2 = pd.Series(["India", "Canada", "Germany"], name="Countries") print(ser2)
Output:
0 India
1 Canada
2 Germany
Name: Countries, dtype: object
import pandas as pd ser3 = pd.Series(["A"]*4) print(ser3)
Output:
0 A
1 A
2 A
3 A
dtype: object
import pandas as pd ser4 = pd.Series({"India": "New Delhi", "Japan": "Tokyo", "UK": "London"}) print(ser4)
Output:
India New Delhi
Japan Tokyo
UK London
dtype: object
import pandas as pd import numpy as np ser1 = pd.Series(np.linspace(1, 10, 5)) print(ser1) ser2 = pd.Series(np.random.normal(size=5)) print(ser2)
Output:
0 1.00
1 3.25
2 5.50
3 7.75
4 10.00
dtype: float64
0 -1.694452
1 -1.570006
2 1.713794
3 0.338292
4 0.803511
dtype: float64
import pandas as pd import numpy as np ser1 = pd.Series({"India": "New Delhi", "Japan": "Tokyo", "UK": "London"}) print(ser1.values) print(ser1.index) print("\n") ser2 = pd.Series(np.random.normal(size=5)) print(ser2.index) print(ser2.values)
Output:
['New Delhi' 'Tokyo' 'London']
Index(['India', 'Japan', 'UK'], dtype='object')
RangeIndex(start=0, stop=5, step=1)
[ 0.66265478 -0.72222211 0.3608642 1.40955436 1.3096732 ]
import pandas as pd values = ["India", "Canada", "Australia", "Japan", "Germany", "France"] code = ["IND", "CAN", "AUS", "JAP", "GER", "FRA"] ser1 = pd.Series(values, index=code) print(ser1)
Output:
IND India
CAN Canada
AUS Australia
JAP Japan
GER Germany
FRA France
dtype: object
import pandas as pd values = ["India", "Canada", "Australia", "Japan", "Germany", "France"] code = ["IND", "CAN", "AUS", "JAP", "GER", "FRA"] ser1 = pd.Series(values, index=code) print(len(ser1)) print(ser1.shape) print(ser1.size)
Output:
6
(6,)
6
Head()函数:
import pandas as pd values = ["India", "Canada", "Australia", "Japan", "Germany", "France"] code = ["IND", "CAN", "AUS", "JAP", "GER", "FRA"] ser1 = pd.Series(values, index=code) print("-----Head()-----") print(ser1.head()) print("\n\n-----Head(2)-----") print(ser1.head(2))
Output:
-----Head()-----
IND India
CAN Canada
AUS Australia
JAP Japan
GER Germany
dtype: object
-----Head(2)-----
IND India
CAN Canada
dtype: object
Tail()函数:
import pandas as pd values = ["India", "Canada", "Australia", "Japan", "Germany", "France"] code = ["IND", "CAN", "AUS", "JAP", "GER", "FRA"] ser1 = pd.Series(values, index=code) print("-----Tail()-----") print(ser1.tail()) print("\n\n-----Tail(2)-----") print(ser1.tail(2))
Output:
-----Tail()-----
CAN Canada
AUS Australia
JAP Japan
GER Germany
FRA France
dtype: object
-----Tail(2)-----
GER Germany
FRA France
dtype: object
Take()函数:
import pandas as pd values = ["India", "Canada", "Australia", "Japan", "Germany", "France"] code = ["IND", "CAN", "AUS", "JAP", "GER", "FRA"] ser1 = pd.Series(values, index=code) print("-----Take()-----") print(ser1.take([2, 4, 5]))
Output:
-----Take()-----
AUS Australia
GER Germany
FRA France
dtype: object
import pandas as pd num = [000, 100, 200, 300, 400, 500, 600, 700, 800, 900] idx = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'] series = pd.Series(num, index=idx) print("\n [2:2] \n") print(series[2:4]) print("\n [1:6:2] \n") print(series[1:6:2]) print("\n [:6] \n") print(series[:6]) print("\n [4:] \n") print(series[4:]) print("\n [:4:2] \n") print(series[:4:2]) print("\n [4::2] \n") print(series[4::2]) print("\n [::-1] \n") print(series[::-1])
Output:
[2:2]
C 200
D 300
dtype: int64
[1:6:2]
B 100
D 300
F 500
dtype: int64
[:6]
A 0
B 100
C 200
D 300
E 400
F 500
dtype: int64
[4:]
E 400
F 500
G 600
H 700
I 800
J 900
dtype: int64
[:4:2]
A 0
C 200
dtype: int64
[4::2]
E 400
G 600
I 800
dtype: int64
[::-1]
J 900
I 800
H 700
G 600
F 500
E 400
D 300
C 200
B 100
A 0
dtype: int64
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:mmqy2019@163.com进行举报,并提供相关证据,查实之后,将立刻删除涉嫌侵权内容。
长按识别二维码并关注微信
更方便到期提醒、手机管理